home *** CD-ROM | disk | FTP | other *** search
- SUBROUTINE DLAE2( A, B, C, RT1, RT2 )
- *
- * -- LAPACK auxiliary routine (version 2.0) --
- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- * Courant Institute, Argonne National Lab, and Rice University
- * October 31, 1992
- *
- * .. Scalar Arguments ..
- DOUBLE PRECISION A, B, C, RT1, RT2
- * ..
- *
- * Purpose
- * =======
- *
- * DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix
- * [ A B ]
- * [ B C ].
- * On return, RT1 is the eigenvalue of larger absolute value, and RT2
- * is the eigenvalue of smaller absolute value.
- *
- * Arguments
- * =========
- *
- * A (input) DOUBLE PRECISION
- * The (1,1) element of the 2-by-2 matrix.
- *
- * B (input) DOUBLE PRECISION
- * The (1,2) and (2,1) elements of the 2-by-2 matrix.
- *
- * C (input) DOUBLE PRECISION
- * The (2,2) element of the 2-by-2 matrix.
- *
- * RT1 (output) DOUBLE PRECISION
- * The eigenvalue of larger absolute value.
- *
- * RT2 (output) DOUBLE PRECISION
- * The eigenvalue of smaller absolute value.
- *
- * Further Details
- * ===============
- *
- * RT1 is accurate to a few ulps barring over/underflow.
- *
- * RT2 may be inaccurate if there is massive cancellation in the
- * determinant A*C-B*B; higher precision or correctly rounded or
- * correctly truncated arithmetic would be needed to compute RT2
- * accurately in all cases.
- *
- * Overflow is possible only if RT1 is within a factor of 5 of overflow.
- * Underflow is harmless if the input data is 0 or exceeds
- * underflow_threshold / macheps.
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D0 )
- DOUBLE PRECISION TWO
- PARAMETER ( TWO = 2.0D0 )
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D0 )
- DOUBLE PRECISION HALF
- PARAMETER ( HALF = 0.5D0 )
- * ..
- * .. Local Scalars ..
- DOUBLE PRECISION AB, ACMN, ACMX, ADF, DF, RT, SM, TB
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Compute the eigenvalues
- *
- SM = A + C
- DF = A - C
- ADF = ABS( DF )
- TB = B + B
- AB = ABS( TB )
- IF( ABS( A ).GT.ABS( C ) ) THEN
- ACMX = A
- ACMN = C
- ELSE
- ACMX = C
- ACMN = A
- END IF
- IF( ADF.GT.AB ) THEN
- RT = ADF*SQRT( ONE+( AB / ADF )**2 )
- ELSE IF( ADF.LT.AB ) THEN
- RT = AB*SQRT( ONE+( ADF / AB )**2 )
- ELSE
- *
- * Includes case AB=ADF=0
- *
- RT = AB*SQRT( TWO )
- END IF
- IF( SM.LT.ZERO ) THEN
- RT1 = HALF*( SM-RT )
- *
- * Order of execution important.
- * To get fully accurate smaller eigenvalue,
- * next line needs to be executed in higher precision.
- *
- RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
- ELSE IF( SM.GT.ZERO ) THEN
- RT1 = HALF*( SM+RT )
- *
- * Order of execution important.
- * To get fully accurate smaller eigenvalue,
- * next line needs to be executed in higher precision.
- *
- RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
- ELSE
- *
- * Includes case RT1 = RT2 = 0
- *
- RT1 = HALF*RT
- RT2 = -HALF*RT
- END IF
- RETURN
- *
- * End of DLAE2
- *
- END
-